SU(3) Spin-Orbit Coupling in Ultracold Atoms
نویسندگان
چکیده
Motivated by the recent experimental success in realizing synthetic spin-orbit coupling in ultracold atomic systems, we consider N -component atoms coupled to a non-Abelian SU(N) gauge field. More specifically, we focus on the case, referred to here as “SU(3) spin-orbit-coupling,” where the internal states of three-component atoms are coupled to their momenta via a matrix structure that involves the Gell-Mann matrices (in contrast to the Pauli matrices in conventional SU(2) spin-orbitcoupled systems). It is shown that the SU(3) spin-orbit-coupling gives rise to qualitatively different phenomena and in particular we find that even a homogeneous SU(3) field on a simple square lattice enables a topologically non-trivial state to exist, while such SU(2) systems always have trivial topology. In deriving this result, we first establish an equivalence between the Hofstadter model with a 1/N Abelian flux per plaquette and a homogeneous SU(N) non-Abelian model. The former is known to have a topological spectrum for N > 2, which is thus inherited by the latter. It is explicitly verified by an exact calculation for N = 3, where we develop and use a new algebraic method to calculate topological indices in the SU(3) case. Finally, we consider a strip geometry and establish the existence of three gapless edge states – the hallmark feature of such an SU(3) topological insulator.
منابع مشابه
SU(3) spin-orbit coupling in systems of ultracold atoms.
Motivated by the recent experimental success in realizing synthetic spin-orbit coupling in ultracold atomic systems, we consider N-component atoms coupled to a non-Abelian SU(N) gauge field. More specifically, we focus on the case, referred to here as "SU(3) spin-orbit-coupling," where the internal states of three-component atoms are coupled to their momenta via a matrix structure that involves...
متن کاملSpin-Orbit Coupling and Spin Textures in Optical Superlattices.
We propose and demonstrate a new approach for realizing spin-orbit coupling with ultracold atoms. We use orbital levels in a double-well potential as pseudospin states. Two-photon Raman transitions between left and right wells induce spin-orbit coupling. This scheme does not require near resonant light, features adjustable interactions by shaping the double-well potential, and does not depend o...
متن کاملSpin-orbit coupling and Berry phase with ultracold atoms in 2D optical lattices.
We show how spin-orbit coupling and Berry phase can appear in two-dimensional optical lattices by coupling atoms' internal degrees of freedom to radiation. The Rashba Hamiltonian, a standard description of spin-orbit coupling for two-dimensional electrons, is obtained for the atoms under certain circumstances. We discuss the possibility of observing associated phenomena, such as the anomalous H...
متن کاملSpin-orbit coupling and perpendicular Zeeman field for fermionic cold atoms: Observation of the intrinsic anomalous Hall effect
We propose a scheme for generating Rashba spin-orbit coupling and a perpendicular Zeeman field simultaneously for cold fermionic atoms in a harmonic trap through the coupling between atoms and laser fields. The realization of Rashba spin-orbit coupling and a perpendicular Zeeman field provides opportunities for exploring many topological phenomena using cold fermionic atoms. We focus on the int...
متن کاملSpin–orbital-angular-momentum coupling in Bose-Einstein condensates
Spin-orbit coupling (SOC) plays a crucial role in many branches of physics. In this context, the recent experimental realization of the coupling between spin and linear momentum of ultracold atoms opens a completely new avenue for exploring new spin-related superfluid physics. Here we propose that another important and fundamental SOC, the coupling between spin and orbital angular momentum (SOA...
متن کامل